44 research outputs found

    Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein-protein interactions

    Get PDF
    Motivation: The increasing amount of data on protein-protein interaction needs to be rationalized for deriving guidelines for the alteration or design of an interface between two proteins. Results: We present a detailed structural analysis and comparison of homo- versus heterodimeric protein-protein interfaces. Regular secondary structures (helices and strands) are the main components of the former, whereas non-regular structures (turns, loops, etc.) frequently mediate interactions in the latter. Interface helices get longer with increasing interface area, but only in heterocomplexes. On average, the homodimers have longer helical segments and prominent helix-helix pairs. There is a surprising distinction in the relative orientation of interface helices, with a tendency for aligned packing in homodimers and a clear preference for packing at 90° in heterodimers. Arg and the aromatic residues have a higher preference to occur in all secondary structural elements (SSEs) in the interface. Based on the dominant SSE, the interfaces have been grouped into four classes: α, β, αβ and non-regular. Identity between protein and interface classes is the maximum for α proteins, but rather mediocre for the other protein classes. The interface classes of the two chains forming a heterodimer are often dissimilar. Eleven binding motifs can capture the prominent architectural features of most of the interfaces

    Structural segments and residue propensities in protein-RNA interfaces: Comparison with protein-protein and protein-DNA complexes

    Get PDF
    The interface of a protein molecule that is involved in binding another protein, DNA or RNA has been characterized in terms of the number of unique secondary structural segments (SSSs), made up of stretches of helix, strand and non-regular (NR) regions. On average 10-11 segments define the protein interface in protein-protein (PP) and protein-DNA (PD) complexes, while the number is higher (14) for protein-RNA (PR) complexes. While the length of helical segments in PP interaction increases with the interface area, this is not the case in PD and PR complexes. The propensities of residues to occur in the three types of secondary structural elements (SSEs) in the interface relative to the corresponding elements in the protein tertiary structures have been calculated. Arg, Lys, Asn, Tyr, His and Gln are preferred residues in PR complexes; in addition, Ser and Thr are also favoured in PD interfaces

    Unique Physicochemical Patterns of Residues in Protein-Protein Interfaces

    Get PDF
    Protein-protein interactions can be characterized by high-resolution structures of complexes, from which diverse features of the interfaces can be derived. For the majority of protein-protein interactions identified, however, there is no information on the structure of the complex or the interface involved in the interaction. Understanding what surface properties drive certain interactions is crucial in the functional evaluation of protein complexes. Here we show that the local patterning of the physicochemical properties of amino acids within surface patches is characteristic of interfaces. To describe this feature in a quantitative manner, we have defined a statistical potential, iPat, as a measure of surface patterning. iPat, which does not take evolutionary conservation or knowledge of the interaction partner into consideration, represents a function principally different from algorithms that consider intermolecular contacts. We assess its suitability for characterizing protein and peptide interfaces, and we demonstrate that iPat is uniquely descriptive for interfaces of proteins that undergo large conformational changes or that are involved in the binding of intrinsically disordered protein (IDP) partners. We suggest that as a stand-alone propensity or in combination with other features, iPat represents a new feature in analyzing the functional binding specificity of protein-protein interactions that has better predictive potential than other simple 1D features, such as hydrophobicity or stickiness

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al

    Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics

    Get PDF
    Liquid-liquid phase separation (LLPS) of RNA-binding proteins plays an important role in the formation of multiple membrane-less organelles involved in RNA metabolism, including stress granules. Defects in stress granule homeostasis constitute a cornerstone of ALS/FTLD pathogenesis. Polar residues (tyrosine and glutamine) have been previously demonstrated to be critical for phase separation of ALS-linked stress granule proteins. We now identify an active role for arginine-rich domains in these phase separations. Moreover, arginine-rich dipeptide repeats (DPRs) derived from C9orf72 hexanucleotide repeat expansions similarly undergo LLPS and induce phase separation of a large set of proteins involved in RNA and stress granule metabolism. Expression of arginine-rich DPRs in cells induced spontaneous stress granule assembly that required both eIF2α phosphorylation and G3BP. Together with recent reports showing that DPRs affect nucleocytoplasmic transport, our results point to an important role for arginine-rich DPRs in the pathogenesis of C9orf72 ALS/FTLD

    DisProt: intrinsic protein disorder annotation in 2020

    Get PDF
    The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the ‘dark’ proteome

    Critical assessment of protein intrinsic disorder prediction

    Get PDF
    Abstract: Intrinsically disordered proteins, defying the traditional protein structure–function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning techniques and notably outperform physicochemical methods. The top disorder predictor has Fmax = 0.483 on the full dataset and Fmax = 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with Fmax = 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude
    corecore